Linear Recurrences for Cylindrical Networks
نویسندگان
چکیده
منابع مشابه
Diophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملLinear Recurrences via Probability
The long run behavior of a linear recurrence is investigated using standard results from probability theory. In a recent paper [1] in the American Mathematical Monthly, the authors look at several distinct approaches to studying the convergence and limit L of a sequence (xn) given by a linear recurrence. Our approach is to use probability to study the same sequence. The nth term xn of the seque...
متن کاملLecture # 27 : Linear Recurrences
1 Recurrences A linear, first order recurrence is a problem of the form x(j) = a(j)x(j − 1) + y(j), x(1) = y(1) (x(0) = 0), 1 · · · · · · · −a(2) 1 · · · · · · · −a(3) 1 · · · · · · · −a(4) 1 · · · · · · · −a(5) 1 · · · · · · · −a(6) 1 · · · · · · · −a(7) 1 · · · · · · · −a(8) 1 Such a bidiagonal system of equations corresponds to the forward solution of a system Ax = y after LU–factorization o...
متن کاملLinear Vector Recurrences
General solution methods for linear vector recurrences are considered; an algorithm based on partial fraction expansion is shown to be the most efficient way of solving this problem.
متن کاملLinear Recurrences for r-Bell Polynomials
Letting Bn,r be the n-th r-Bell polynomial, it is well known that Bn(x) admits specific integer coordinates in the two bases {x}i and {xBi(x)}i according to, respectively, the Stirling numbers and the binomial coefficients. Our aim is to prove that the sequences Bn+m,r(x) and Bn,r+s(x) admit a binomial recurrence coefficient in different bases of the Q-vector space formed by polynomials of Q[X].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2017
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnx241